GeLL: a generalized likelihood library for phylogenetic models
نویسندگان
چکیده
UNLABELLED Phylogenetic models are an important tool in molecular evolution allowing us to study the pattern and rate of sequence change. The recent influx of new sequence data in the biosciences means that to address evolutionary questions, we need a means for rapid and easy model development and implementation. Here we present GeLL, a Java library that lets users use text to quickly and efficiently define novel forms of discrete data and create new substitution models that describe how those data change on a phylogeny. GeLL allows users to define general substitution models and data structures in a way that is not possible in other existing libraries, including mixture models and non-reversible models. Classes are provided for calculating likelihoods, optimizing model parameters and branch lengths, ancestral reconstruction and sequence simulation. AVAILABILITY AND IMPLEMENTATION http://phylo.bio.ku.edu/GeLL under a GPL v3 license.
منابع مشابه
A comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-th...
متن کاملThe Phylogenetic Likelihood Library
We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 14 شماره
صفحات -
تاریخ انتشار 2015